

Biological Risk Assessment: How safe are we in our labs if we apply the risk based approach according to the new WHO Biosafety Manual?

^b UNIVERSITÄT BERN

Kathrin Summermatter

Who I am

Kathrin Summermatter Head of the Biosafety Center ifik, University of Berne, Switzerland

INIVERSITÄT

Scientific contributor to: LBM, 4th edition Monograph risk assessment Monograph decontamination Monograph PPE

Katharina.summermatter@ifik.unibe.ch

Where I work

Institute for Infectious Diseases of the University of Berne

 Clinical microbiology (bacteriology, virology, parasitology, mycology) 24/7/365

UNIVERSITÄT

- Research and development
- Teaching
- Staff: appr. 180
- BSL1,2 and 3; ABSL1 and 2
- Biosafety Center

b UNIVERSITÄT BERN INSTITUT FÜR INFEKTIONSKRANKHEITEN

Introduction

4

- The WHO risk based approach
- The new laboratory biosafety manual and monographs
- The risk based approach for SARS-CoV-2 diagnostic: an example
- Conclusions

Introduction

UNIVERSITÄT BERN INSTITUT FÜR INFEKTIONSKRANKHEITEN

1

What is your opinion?

b UNIVERSITÄT BERN INSTITUT FÜR INFEKTIONSKRANKHEITEN

Will we be less safe if we apply the risk based approach?

NO

Laboratory associated infections

D UNIVERSITÄT BERN INSTITUT FÜR INFEKTIONSKRANKHEITEN


ClinMicroNet online survey of 2002-2004 (ASM):

- 88 hospital microbio labs and 3 national ref. labs
- 33 % of laboratories reported at least 1 laboratory associated infection
- Most common : shigellosis, brucellosis, salmonellosis
- Highest incidence : Brucella and Neisseria meningitidis

Incidence of infection	General population	Laboratory worker
Brucella species	0.08/100.000	641/100.000
Neisseria meningitidis	0.62/100.000	25.3/100.000

https://academic.oup.com/cid/article/49/1/142/371797

A Lab Accident Likely Led to a Woman's Death From Brain-Destroying Prions 9 Years Later

Ed Cara 4 days ago

0 9 0 8

A lab accident in 2010 likely led to a woman's untimely death nearly a decade later, according to doctors in France. In a recent case study, they describe how a woman in her early 30s developed a universally fatal brain disorder years after she had pierced her skin with equipment used to handle infectious rogue proteins called prions.

D UNIVERSITÄT BERN INSTITUT FÖR INFEKTIONSKRANKHEITEN

U

Variant Creutzfeldt–Jakob Disease Diagnosed 7.5 Years after Occupational Exposure

- While she was using forceps to handle the samples, she accidentally stabbed her thumb through a double pair of latex gloves, enough to break the skin and cause bleeding (2010).
- Conclusions: Percutaneous exposure to prion-contaminated material is plausible in this patient, since the prion strain that she had handled was consistent with the development of variant CJD. The 7.5-year delay between the laboratory accident and her clinical symptoms is congruent with the incubation period in the transfusiontransmitted form of the disease.

https://www.nejm.org/doi/full/10.1056/NEJMc2000687

Surveillance of laboratory exposures to human pathogens and toxins, Canada 2019

Figure 4: Reported occurrence types involved in

reported exposure incidents, Canada 2019 (N=78) 20 18 16 Number of occurrences 14 12 10 8 6 4 2 0 Sharp V055 Occurrence type

Table 3: Root causes reported in follow-up reports of exposure incidents, Canada 2019 (N=144) (continued)

UNIVERSITÄT

	Examples of areas of concern		Citations	
Root cause			%	
Human interaction	A violation (cutting a corner, not follow correct procedure, deviating from standard operating procedure) An error (a mistake, lapse of concentration, or slip of some sort)		24	
Management	Supervision needed improvement		14	
and oversight	Lack of auditing of standards, policies, and procedures			
	Risk assessment needed improvement			
Training	Training not in place but should have been in place		12	
	Training not correct for the task/activity			
	Staff were not qualified or proficient in performing the task			
Standard operating	Documents were followed as written but not correct for activity/task		19	
procedure	Procedures not in place but should have been in place			
	Documents were not followed correctly			
Other	Not applicable	8	5	

Note: Percentages rounded to the nearest whole number

Abbreviation: PPE, personal protective equipment

https://www.canada.ca/content/dam/phac-aspc/documents/services/reports-publications/canadacommunicable-disease-report-ccdr/monthly-issue/2020-46/issue-9-sept-3-2020/ccdrv46i09a07-eng.pdf

b UNIVERSITÄT BERN INSTITUT FÜR INFEKTIONSKRANKHEITEN

 u^{\flat}

The WHO risk based approach

Are we less safe in the future?

- We still have laboratory acquired infections despite highly sophisticated BSLs
- Risk groups differ in description, name and expression between countries
- Different countries have differents cultures, climates, requirements and resources
- Funding to sustain the labs is not always guaranteed or underestimated
- The one fit all approach does not fit all
- WHO issues guidelines that should be applicable worldwide

https://science.sciencemag.org/content/360/6386/260?rss=1/share

G	Electronic intervention of the second					
õ						
0	Address Stand Source					
ě	Article	Figures & Data	Info & Metrics	el.etters	PDF	

A researcher dons a protective suit at Dinaux National Reserves Laboratory in Walter, Habel Province, China,

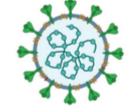
Facts

Most laboratories:

- BSL1 BSL2
- Increasing number of BSL3
- Few BSL4

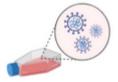
Despite existing regulations:

- Each BSL3 and BSL4 is unique
- Sophisticated enigeering controls
- Cost intensive


Question: What do we really need to perform our activities safely and secure?

UNIVERSITÄT BERN INSTITUT FÜR INFEKTIONSKRANKHEITEN An example: Risk assessment according to Swiss containment ordinance

Risk group for organisms



INIVERSITÄT

Biosafety level for laboratories Safety equipment **Practices and procedures**

So far:

Risk group -> biosafety level National classification systems for organisms Prescriptive measures not always based on risk Checklist approach

WHO approach:

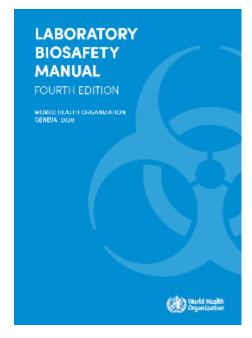
Risk assessment for activities (characteristics of agents, activity, facility, local / national circumstances) Risk based mitigation measures based on available and sustainable resources

b UNIVERSITÄT BERN INSTITUT FÖR INFEKTIONSKRANKHEITE

D UNIVERSITÄT BERN INSTITUT FÜR INFEKTIONSKRANKHEITEN

The new laboratory biosafety manual and monographs

How to use the manual and the monographs


- Existing national regulations are still to be implemented at the national level and will not be undermined by the new WHO manual.
- The manual is intended to serve as a guideline and resource for biosafety professionals.
- It is open for state-level regulation that uses risk groups and biosafety levels, as well as activity-based, list-based, etc. regulation.
- Templates in the monographs
- Recommended reading to start: core document, biosafety programme management, risk assessment

4th Laboratory Biosafety Manual of WHO

Core document – nine section (appr. 90 pages):

- Glossary
- Introduction
- Risk assessment
- Core requirements
- Heightened control measures
- Maximum containment measures
- Transfer and transportation
- Biosafety programme management
- Laboratory biosecurity
- National / international biosafety oversight

4th Laboratory Biosafety Manual of WHO

Monographs with more detailed information:

- Risk assessment
- Biosafety cabinets and other primary containment devices
- Personal protective equipment
- Decontamination and waste management
- Laboratory design and maintenance
- Biosafety programme management
- Outbreak preparedness and resilience

LABORATORY BIOSAFETY MANUAL IRTH EDITION WORLD HEALTH ORGANIZATION JENEVA 202

Biosafety programme management

 $u^{\scriptscriptstyle b}$

LABORATORY BIOSAFETY MANUAL FOURTH EDITION AND ASSOCIATED MONOGRAPHS

BIOSAFETY PROGRAMME MANAGEMENT

Biosafety programme management cycle

- Facilities handling biological agents
 -> biosafety programme
- Roles and responsiblities (biosafety committee, BSO etc.)
- Facilities can be of various complexities
- Use of low to high consequence pathogens

Figure 2.1 Biosafety programme management cycle

Helpful templates

ANNEX 1. Pathogen safety data sheet template ANNEX 2. Biosafety risk assessment template ANNEX 3. Biosecurity risk assessment template ANNEX 4. Biosafety manual template ANNEX 5. Biosecurity plan template ANNEX 6. Occupational health and safety programme template ANNEX 7. Emergency response template ANNEX 8. Incident reporting form and investigation report ANNEX 9. Inventory template

ANNEX 4. BIOSAFETY MANUAL TEMPLATE

	Table of Contents
	1 Overview and purpose
	2 Scope
	3 Definitions
	4 Institutional policies
	4.1 Occupational health policy
	4.2 Biosafety policy .
	5 Roles and responsibilities.
	5.1 Senior management
	5.2 Blosafety committee.
	5.3 Biosafety officer.
	5.4 Laboratory personnel
	6 Operational working practices .
	6.1 Safe work practices and standard operating procedures (SOPs)
	6.2 Personal protective equipment (PPE).
	6.3 Working with laboratory animals.
	6.4 Principles of deconlamination
	7 Records and documentation
	7.1 Inventory control.
	7.2 Laboratory access
	7.3 Licences and authorizations
	7.4 Inspection and audit reports.
	8 Personnel competence and training
	8.1 Training programme
	9 Risk control measures
	9.1 Facility design.
	9.2 Laboratory equipment.
	9.3 Biological safety cabinets (BSCs).
	9.4 Fume hoods
1	9.5 Autoclaves/steam sterilizers (safe procedures; verification)

Pathogen safety data sheet template

Pathogen safety data sheet template

SECTION 1 Biological agent

Pathogen					BERN
Pathogen (Official taxonomic naming convention)			Laboratory-associated infections		
Other names (for example, former taxonomic name, common name)			Are there known exposure incidents within the organization?	□ No □ Unknown	Yes (describe incidents and circumstances)
Agent type	E Fungus] Virus] Prion] Other (describe)	or genicement.		
Taxonomy	Family		Are there known exposures external to the organization? (Evidence from the literature [research, diagnostic,	□ No □ Unknown	Yes (describe)
	Genus		health care] of laboratory-associated infections with the biological agent, including the circumstances)		
	Species		Sources/specimens		
	Subspecies/strain/clonal strain	n	List primary biological specimens likely to contain the		
Characteristics	Appearance		biological agent (for example, blood, urine, semen, mucous, faeces, necropsy tissues)		
	Size				
	Shape		Primary hazards		
	Genome structure (for example, RNA/DNA virus, a	enze/antisense)	Indicate primary hazards	Ingestion Exposure Auto-inoculation	 Bites/scratches (from infected animal) Exposure to animal
	Other (describe)				
Properties contributing to risk	ributing to risk Modifications from parental strain		Inhalation Fomites	waste or carcasses Other (describe)	
	Sporulation				
	Toxin production				
	Oxygen requirements		Special hazards		
	Enzymatic activity		Indicate special hazards (for example, in diagnostic laboratories that receive		
	Life cycle		potentially contaminated testing request forms shipped		
	Reproduction		in the same box as the specimens)		

UNIVERSITÄT BERN

D UNIVERSITÄT BERN INSTITUT FOR INFEKTIONSKRANKHEITEN

Risk assessment

How to use the monograph

- Monograph is designed to accompany and support the core document as well as other monographs
- Other monographs provide details for systems and strategies to mitigate risks
- Monograph describes the risk assessment process including the selection of the team
- Questions to be addressed
- Ranking of risks
- Risk control strategies
- Lessons learnt
- Two templates for risk assessments
- Examples or key steps in the risk assessment
- Examples of completed risk assessments

Core element: Risk Assessment

ADORA - principle: All Depend On Risk Assessment

UNIVERSITÄT BERN INSTITUT FÜR INFEKTIONSKRANKHEITEN LABORATORY BIOSAFETY MANUAL FOURTH EDITION AND ASSOCIATED MONOGRAPHS RISK ASSESSMENT

Risk

Risk = likelihood x consequence

Likelihood: probability of an incident (exposure / release) occurring in the course of laboratory work

Consequence: Outcome of an incident (exposure / release) of varying severity of harm, occurring in the course of laboratory operations (laboratory associated infections, illness, physical injury, environment contamination, asymptomatic carriage of a biological agent)

The risk assessment framework

Standardized and structured way:

- Gather information
- Evaluation of risk
- Development of risk control strategy
- Selection and implementation of controls
- Review

UNIVERSITÄT

INSTITUT FÜR INFEKTIONSKRANKHEITEN

We have to know what we are doing!

- Biological Material
- Type of laboratory work / procedures
- Type of equipment
- Laboratory facility
- Human factors (e.g. competency)
- Other factors (legal, political, cultural, public perception etc.)

UNIVERSITÄT

FÜR INFEKTIONSKRANKI

Likelihood of an exposure or release occuring during the laboratory work

- Rare: almost impossible to occur
- Unlikely: not very possible to occur
- Possible: might occur
- Likely: very possible to occur
- Almost certain: highly probable to occur

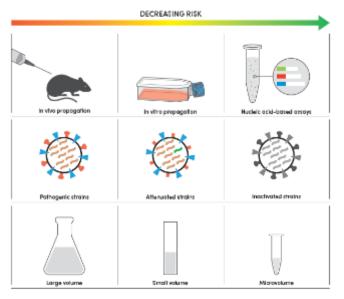


Figure 3.2 Examples of techniques to reduce or eliminate the risks of infection associated with manipulating biological agente. The lower risks reduce the need for risk control measurer that would otherwise be required.

Severity of consequences

b UNIVERSITÄT BERN INSTITUT FÜR INFEKTIONSKRANKHEITEN

- Negligible: Trivial incident or near miss requiring reporting and follow up
- *Minor*. Incident with self-limiting consequences
- Moderate: Incident that requires medical treatment and/or has insignificant environmental consequences
- *Major*. Incident with potential lost time due to infection but nonpermanent consequence and/or limited environmental impact
- Severe: Potential fatality or serious illness with permanent disability and/or serious environmental impact

Qualitative vs. quantitative approach

D UNIVERSITÄT BERN INSTITUT FÖR INFEKTIONSKRANKHEITEN

Although a qualitative approach to combining likelihood and severity parameters in a risk matrix is provided as a risk evaluation method here, it is important to note that quantitative (for example, simple numerical scoring schemes to complex mathematical models) and hybrid (semi-quantitative) methods can also be used for risk evaluation. Laboratories should use a risk evaluation/ assessment method that best meets their unique needs, without excluding the possibility of developing customized evaluation approaches, scoring methods and definitions of the parameters.

Determination of initial risk

D UNIVERSITÄT BERN INSTITUT FÖR INFEKTIONSKRANKHEITEN

- How could an exposure / release occur?
- How likely is an exposure or release?
- What are the consequences of an exposure or rerlease?
- What can influence the likelihood or consequences?
- What measures are already in place?
- What is the overall risk of the activities?
- What are the advantages and disadvantages of different types of controls?
- Is the risk acceptable? If no, can the risk be controlled?

Factors associated with high likelihood of incidents occuring

- Aerosol formation
- Sharps
- Low competency of lab personnel
- High environmental stability
- Malfunctioning equipment, poor availability of electricity, poorly maintained facility, access of insects and rodents

Factors associated with greater consequences if an incident were to occur

- Low infectious dose
- High communicability
- High severity and mortality
- Limited availability of prophylaxis or treatment
- Large susceptible population
- Lack of endemicity (e.g. exotic disease)

Factors associated with high likelihood and greater consequences if an incident were to occur

- High concentration or volume or numbers of samples
- Airborne route of transmission

INIVERSITÄT

Templates for the risk assessment

Institution/Facility name	
Laboratory name	
Laboratory manager/Supervisor	
Project titles/Relevant standard operating procedures (SOPs)	
Date	

If using this template, complete all sections following the instructions in the grey boxes. The instructions and builter points in the grey boxes can be copied into the text boxes beneath the instructions and used as prompts to gather and record the necessary site-specific information. The grey instruction boxes can then be deleted, and the text remaining will form a risk assessment draft. This draft must be carefully reviewed, edited as necessary and approved by the risk assessment team members.

STEP 1. Gather information (hazard identification)

Instructions: Provide a brief overview of the laboratory work and summarize the laboratory activities to be conducted that are included in the scope of this risk assessment.				
Describe the biological agents and other potential hazards (for example, transmission, infectious dose, treatment/preventive measures, pathogenicity).				
Describe the laboratory procedures to be used (for example, culturing, centrifugation, work with sharps, waste handling, frequency of performing the laboratory activity).				
Describe the types of equipment to be used (personal protective equipment (PPE), centrifuges, autoclaves, biological safety cabinets (BSCs)).				
Describe the type and condition of the facility where work is conducted.				
Describe relevant human factors (for example, competency, training, experience and attitude of personnel).				
Describe any other factors that may affect laboratory operations (for example, legal, cultural, socioeconomic).				

HTÄT

RINFEKTIONSKRANKHEITEN

Instructions: Describe how exposure and/or release could	l occur.
What patential situations are there in which exposure ar release could accur?	
What is the likelihood of an exposure/release accurring (unlikely, possible, likely)?	
What is the severity of the consequences of an exposure/ release (negligible, moderate, severe)?	

Instructions: Evaluate the risk and prioritize the implementation of risk control measures. Circle the initial risk of the laboratory activities including risk control measures described in STEP 1 but before any additional risk control measures have been put in place.

Note:

 When assigning priority, other factors may need to be considered, for example, urgency, feasibility/sustainability of risk control measures, delivery and installation time and training availability.

 To extimate the overall risk, take into consideration the risk ratings for the individual laboratory activities/ procedures, separately or callectively as appropriate for the laboratory.

			Lik	eliho	od of exposure/	release		
		Unlike	Y.		Possible		Likely	
	Severe	Mediur	π		High	3	Arry high	
Consequences of exposure/release	Moderate	Low		Medium			High	
	Negligible Wwy.low Low		Low	Medium				
Laboratory activity/procedure		(very low, law,		Is the Initial risk acceptable? (yes/ha)			Priority (high/medium/low)	
Select the overall initial r	lek.	C Very low	Low		D Međium	C] High	To Very high	
Should work proceed wit control measures?	hout additional risk	risk Yes 🗆 No 🗆						

Templates for the risk assessment for more complex activities

D UNIVERSITÄT BERN INSTITUT FÜR INFEKTIONSKRANKHEITEN

2.4 Describe the initial risk of the laboratory activities before additional risk control measures have been put in place

Instructions: Circle the initial risk of the laboratory activities before additional risk control measures have been put In place. Based upon your evaluation of the likelihood and consequences of an exposure/release as listed above,

assess the initial, or currently existing, risk of the laboratory activity using the table below. Find the likelihood of exposure (top row of the chart) and the consequences (left column of the chart). Likelihood of exposure/release Unlikely Rare Possible Likely Almost certain Severe Medium Medium Hìgh Very high Very high Medium Medium Major Hìgh High Very high Consequences of exposure/ Moderate Low Low Medium High Hìgh release Medium Minor Very low Low Low Medium Very low Very low Medium Medium Negligible Low

Instructions: Check the initial risk to determine the appropriate risk control measures required.

 \boldsymbol{u}

Templates for the risk assessment for more complex activities

UNIVERSITÄT

ANKHEITEN

b

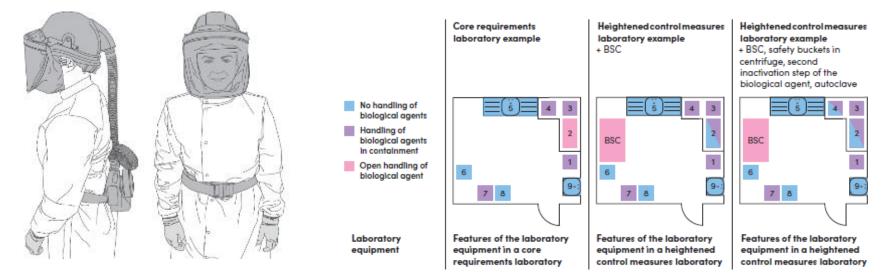
Ū

Assessed	initial risk	Potential consequences	Actions
	Very low	If an incident occurred, harm would be very unlikely.	Undertake the laboratory activity with the existing risk control measures in place.
	Low	If an incident occurred, there would be a small likelihood of harm.	Use risk control measures if needed.
	Medium	If an incident occurred, harm would result that would require basic medical treatment and/or simple environmental measures.	Additional risk control measures are advisable.
	High	If an incident occurred, harm would result that would require medical treatment and/or substantial environmental measures.	Additional risk control measures need to be implemented before the laboratory activity is undertaken.
	Very high	If an incident occurred, a permanent, impairing harm or death and/or extensive environmental effects would be likely.	Consider alternatives to doing the laboratory activity. Comprehensive risk measures will need to be implemented to ensure safety.

NSTITUT FÜR INFEKTIONSKRANKHEITE

It is important to note that risk can **never be completely eliminated unless the work is not performed** at all.

Select and implement risk control measures


- National / international regulation -> measures need to comply / permits
- What risk control measures are locally available and sustainable?
- Are these efficient or are additional control measures needed to enhance efficacy?
- What is the residual risk, is it tolerable?
- Enough resources (operation, maintenance) ?
- Are additional resources needed?
- Have personnel been trained?

Risk mitigation measures

- Core requirements (e.g. GMPP)
- Heightened control measures (e.g. BSC)
- Maximum containment measures: highest protection of worker, community and population

D UNIVERSITÄT BERN INSTITUT FÜR INFEKTIONSKRANKHEITEN

Good microbiological practices and procedures

GMPP are the most essential risk control measures because human error, suboptimal laboratory techniques and improper use of equipment have been found to cause the most laboratory injuries and laboratory-associated infections.

> Source: Monograph: Laboratory design and maintenance

Break – 15 minutes

Please submit questions and comments by using the chat function!

The risk based approach for SARS-CoV-2 diagnostic: an example

Activities in a diagnostic setting

6 UNIVERSITÄT BERN INSTITUT FÖR INFEKTIONSKRANKHEITEN

Unpacking, sample splitting, inactivation of samples PCR of inactivated samples PCR of non inactivated samples

Activities involving SARS-CoV-2: the traditional approach

The traditional approach:

- SARS-CoV-2: *Risk group 3*
- Diagnostic of SARS-CoV-2: biosafety level 2 laboratory -> need to be notified to the authorities
- Research or activities involving cultivation: biosafety level 3 laboratory -> needs a permit
- -> Which safety measures for which step?
- -> Biosafety level 2, but is this enough?
- > What about the procedures?

Risk assessment of the different activity steps

Procedures	Hazards	How likely is this ?**	Consequence	Inherent Risk
A) Sample check, registration	 Container leaks, spill inside plastic bag Container breakage (sharps) 	Possible	Negligible	Low
B) Unpacking samples – vortexing samples	 Aerosol exposure during sample processing Eye splash during sample 	Possible to likely	Moderate	Medium to High
C) Pipetting samples	 processing Infectious material spill 	Possible to likely	Moderate	Medium to High
D) Centrifugation	Aerosol formationBreakage of a tube	Possible	Moderate	Medium
 E) Decapping and loading of the automate removal and recapping of samples 	Spill of tubesDropping of tubes	Possible	Moderate	Medium

b

**The likelihood will depend on control measures that are already in place

Initial risk categorisation

D UNIVERSITÄT BERN INSTITUT FÜR INFEKTIONSKRANKHEITEN

6	Severe	Medium	High	Very high
Consequences of exposure/ release	Moderate	Low	D/E ר ו	B/C High
1010000	Negligible	Very low	A	Medium
		Unlikely	Possible	Likely
		Likelihood of exposure/release		

 $u^{\scriptscriptstyle \flat}$

Which of the following would you select?

FFP3 respirator for pipetting samples
 HEPA-filter exhaust air
 Safety bucket for centrifuge
 Biosafety cabinet
 Spill kit

Procedures	Hazards	How likely is an exposure or release?**	Consequence	Inherent Risk
Sample check, registration	 Container leaks, spill inside packaging system Container breakage (sharps) 	Possible	Negligible	Low
Unpacking samples – vortexing samples -> Biosafety cabinet	 Aerosol exposure during sample processing Eye splash during 	Unlikely	Moderate	Low
Pipetting samples: -> Biosafety cabinet	sample processingInfectious material spill	Unlikely	Moderate	Low
Centrifugation -> safety buckets	Aerosol formationBreakage of a tube	Unlikely	Moderate	Low
Decapping of tubes and loading of the automate – removal and recapping of samples -> respiratory protection	 Aerosols due to dropping tubes 	Unlikely - Possible	Moderate	Low - Medium

**The likelihood will depend on control measures that are already in place

Overall risk

b UNIVERSITÄT BERN INSTITUT FÜR INFEKTIONSKRANKHEITEN

Overall risk with additional measures: low - medium

•	Severe	Medium	High	Very high
Consequences of exposure / release	Moderate	Low	Medium	High
Telease	Negligible	Very low	Low	Medium
		Unlikely	Possible	Likely
		Likelihood of exposure/release		

Some challenges triggering risk assessments u^{*}

- Personnel (risk awareness, training, stress, fatigue, rules for social distancing)
- Space (testing equipment, BSC, storage)
- Reagents and material inlcuding PPE
- Waste management (solid liquid)
- How to react to constant changes and to keep the risk assessment updated?

Conclusions

- Intended to prevent exposure and release
- Risk based approach to be used in a more structed way
- It is more flexible and globally applicable
- Applicable to outbreak situations

Challenges:

- Awareness raising to promote the risk based approach
- Need to share information about biosafety solutions and biosafety best practices
- Need to share lessons learnt

UNIVERSITÄT

ISTITUT FÜR INFEKTIONSKRANKHI

"The overall effect of such developments may increase global risk of accidental or intentional deliberate release."

https://science.sciencemag.org/content/360/6386/260/tab-e-letters

YFS

N()

UNIVERSITÄT BERN INSTITUT FÖR INFEKTIONSKRANKHEITEN

LABORATORY BIOSAFETY MANUAL FOURTH EDITION AND ASSOCIATED MONOGRAPHS

> LABORATORY BIOSAFETY MANUAL FOURTH EDITION

The manual should **complement** any national regulation and oversight mechanisms that may be in place!

It may help countries establishing their own regulations.

Acknowledgement

Kazunobu Kojima, WHO Allan Bennett, PHE Stuart Blacksell, University of Oxford Marianne Heisz, PHA Canada Catherine Makison Booth, HSE Michelle McKinney, NIH Christina Scheel, CDC Rica Zinsky, WHO

UNIVERSITÄT BERN INSTITUT FÜR INFEKTIONSKRANKHEITEN

Link to WHO website: Safeguarding biosafety and biosecurity in laboratories

https://www.who.int/activities/safeguardingbiosafety-and-biosecurity-in-laboratories

Contact : <u>katharina.summermatter@ifik.unibe.ch</u>